Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.115
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672486

RESUMO

The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo.


Assuntos
Motivos de Aminoácidos , Cisteína , Histidina/análogos & derivados , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cisteína/metabolismo , Cisteína/genética , Cisteína/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Multimerização Proteica , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Mutagênese Sítio-Dirigida
2.
FEBS J ; 291(9): 1992-2008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362806

RESUMO

The nucleoside inosine is a main intermediate of purine nucleotide catabolism in Saccharomyces cerevisiae and is produced via the dephosphorylation of inosine monophosphate (IMP) by IMP-specific 5'-nucleotidase 1 (ISN1), which is present in many eukaryotic organisms. Upon transition of yeast from oxidative to fermentative growth, ISN1 is important for intermediate inosine accumulation as purine storage, but details of ISN1 regulation are unknown. We characterized structural and kinetic behavior of ISN1 from S. cerevisiae (ScISN1) and showed that tetrameric ScISN1 is negatively regulated by inosine and adenosine triphosphate (ATP). Regulation involves an inosine-binding allosteric site along with IMP-induced local and global conformational changes in the monomer and a tetrameric re-arrangement, respectively. A proposed interaction network propagates local conformational changes in the active site to the intersubunit interface, modulating the allosteric features of ScISN1. Via ATP and inosine, ScISN1 activity is likely fine-tuned to regulate IMP and inosine homeostasis. These regulatory and catalytic features of ScISN1 contrast with those of the structurally homologous ISN1 from Plasmodium falciparum, indicating that ISN1 enzymes may serve different biological purposes in different organisms.


Assuntos
Trifosfato de Adenosina , Sítio Alostérico , Inosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Inosina/metabolismo , Cinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Domínio Catalítico , Regulação Alostérica , Cristalografia por Raios X , Inosina Monofosfato/metabolismo , Modelos Moleculares , Conformação Proteica , Ligação Proteica
3.
J Microbiol Biotechnol ; 34(4): 930-939, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314447

RESUMO

Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-ß-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.


Assuntos
Hericium , Lacase , Lignina , Saccharomyces cerevisiae , Lacase/metabolismo , Lacase/genética , Lacase/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Hericium/metabolismo , Hericium/genética , Hericium/enzimologia , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sequência de Aminoácidos , Clonagem Molecular , Azida Sódica/farmacologia , Agaricales/enzimologia , Agaricales/genética , Glicosilação
4.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
5.
J Biol Chem ; 299(9): 105072, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474104

RESUMO

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Assuntos
Arginina , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Fosforilação , Arginina/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular , Células HEK293 , Ativação Enzimática/genética , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Cristalização , Sequência de Aminoácidos
6.
Nucleic Acids Res ; 51(9): 4363-4384, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36942481

RESUMO

Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2. We find that Mer3 also forms a previously undescribed complex with the recombination regulating factors Top3 and Rmi1 and that this interaction is competitive with Sgs1BLM helicase. Using in vitro reconstituted D-loop assays we show that Mer3 inhibits the anti-recombination activity of Sgs1 helicase, but only in the presence of Dmc1. Thus we provide a mechanism whereby Mer3 interacts with a network of proteins to protect Dmc1 derived D-loops from dissolution.


Assuntos
DNA Helicases , Recombinação Homóloga , Meiose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Troca Genética , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Ligação Proteica , Dobramento de Proteína , RecQ Helicases/antagonistas & inibidores , RecQ Helicases/química , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligação Competitiva
7.
Mitochondrion ; 69: 104-115, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773733

RESUMO

Iron-sulfur (Fe-S) cluster assembly in mitochondria and cytoplasm is essential for cell viability. In the yeast S. cerevisiae, Leu1 [4Fe-4S] is the cytoplasmic isopropylmalate isomerase involved in leucine biosynthesis. Using permeabilized Δleu1 cells and recombinant apo-Leu1R, here we show that the [4Fe-4S] cluster assembly on Leu1R can be reconstituted in a physiologic manner requiring both mitochondria and cytoplasm, as judged by conversion of the inactive enzyme to an active form. The mitochondrial contribution to this reconstitution assay is abrogated by inactivating mutations in the mitochondrial ISC (iron-sulfur cluster assembly) machinery components (such as Nfs1 cysteine desulfurase and Ssq1 chaperone) or the mitochondrial exporter Atm1. Likewise, depletion of a CIA (cytoplasmic iron-sulfur protein assembly) component Dre2 leads to impaired Leu1R reconstitution. Mitochondria likely make and export an intermediate, called X-S or (Fe-S)int, that is needed for cytoplasmic Fe-S cluster biosynthesis. Here we show that once exported, the same intermediate can be used for both [2Fe-2S] and [4Fe-4S] cluster biogenesis in the cytoplasm, with no further requirement of mitochondria. Our data also suggest that the exported intermediate can activate defective/latent CIA components in cytoplasm isolated from nfs1 or Δatm1 mutant cells. These findings may provide a way to isolate X-S or (Fe-S)int.


Assuntos
Hidroliases , Proteínas Ferro-Enxofre , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoplasma/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Hidroliases/genética , Hidroliases/metabolismo
8.
J Biol Chem ; 299(2): 102870, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621624

RESUMO

The proteasome holoenzyme is a complex molecular machine that degrades most proteins. In the proteasome holoenzyme, six distinct ATPase subunits (Rpt1 through Rpt6) enable protein degradation by injecting protein substrates into it. Individual Rpt subunits assemble into a heterohexameric "Rpt ring" in a stepwise manner, by binding to their cognate chaperones. Completion of the heterohexameric Rpt ring correlates with release of a specific chaperone, Nas2; however, it is unclear whether and how this event may ensure proper Rpt ring assembly. Here, we examined the action of Nas2 by capturing the poorly characterized penultimate step of heterohexameric Rpt ring assembly. For this, we used a heterologous Escherichia coli system coexpressing all Rpt subunits and assembly chaperones as well as Saccharomyces cerevisiae to track Nas2 actions during endogenous Rpt ring assembly. We show that Nas2 uses steric hindrance to block premature progression of the penultimate step into the final step of Rpt ring assembly. Importantly, Nas2 can activate an assembly checkpoint via its steric activity, when the last ATPase subunit, Rpt1, cannot be added in a timely manner. This checkpoint can be relieved via Nas2 release, when Nas2 recognizes proper addition of Rpt1 to one side of its cognate Rpt5, and ATP hydrolysis by Rpt4 on the other side of Rpt5, allowing completion of Rpt ring assembly. Our findings reveal dual criteria for Nas2 release, as a mechanism to ensure both the composition and functional competence of a newly assembled proteasomal ATPase, to generate the proteasome holoenzyme.


Assuntos
Adenosina Trifosfatases , Chaperonas Moleculares , Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Biol Chem ; 299(2): 102852, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592926

RESUMO

The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier. Unexpectedly, the Yta7 BRD stabilizes a four-stranded ß-helix, termed BRD-interacting motif (BIM), of the largely disordered N-terminal region. The BIM motif is unique to the baker's yeast, and we show both BRD and BIM contribute to nucleosome recognition. We found that Yta7 binds both acetylated and nonacetylated H3 peptides but with a higher affinity for the unmodified peptide. This property is consistent with the absence of key residues of canonical BRDs involved in acetylated peptide recognition and the role of Yta7 in general nucleosome remodeling. Interestingly, the BRD tier exists in a spiral and a flat-ring form on top of the Yta7 AAA+ hexamer. The spiral is likely in a nucleosome-searching mode because the bottom BRD blocks the entry to the AAA+ chamber. The flat ring may be in a nucleosome disassembly state because the entry is unblocked and the H3 peptide has entered the AAA+ chamber and is stabilized by the AAA1 pore loops 1 and 2. Indeed, we show that the BRD tier is a flat ring when bound to the nucleosome. Overall, our study sheds light on the nucleosome disassembly by Yta7.


Assuntos
Proteínas que Contêm Bromodomínio , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Proteínas que Contêm Bromodomínio/química , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Conformação Proteica em Folha beta , Multimerização Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Sci Rep ; 12(1): 16991, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216916

RESUMO

N-acetylglucosamine (GlcNAc) is a key component of glycans such as glycoprotein and the cell wall. GlcNAc kinase is an enzyme that transfers a phosphate onto GlcNAc to generate GlcNAc-6-phosphate, which can be a precursor for glycan synthesis. GlcNAc kinases have been found in a broad range of organisms, including pathogenic yeast, human and bacteria. However, this enzyme has never been discovered in Saccharomyces cerevisiae, a eukaryotic model. In this study, the first GlcNAc kinase from S. cerevisiae was identified and named Ngk1. The Km values of Ngk1 for GlcNAc and glucose were 0.11 mM and 71 mM, respectively, suggesting that Ngk1 possesses a high affinity for GlcNAc, unlike hexokinases. Ngk1 showed the GlcNAc phosphorylation activity with various nucleoside triphosphates, namely ATP, CTP, GTP, ITP, and UTP, as phosphoryl donors. Ngk1 is phylogenetically distant from known enzymes, as the amino acid sequence identity with others is only about 20% or less. The physiological role of Ngk1 in S. cerevisiae is also discussed.


Assuntos
Acetilglucosamina , Fosfotransferases (Aceptor do Grupo Álcool) , Saccharomyces cerevisiae , Acetilglucosamina/metabolismo , Trifosfato de Adenosina/metabolismo , Citidina Trifosfato/metabolismo , Glucose/metabolismo , Glicoproteínas/metabolismo , Guanosina Trifosfato/metabolismo , Nucleosídeos/metabolismo , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Uridina Trifosfato/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(33): e2205848119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939674

RESUMO

Tetrahydropapaverine (THP) and papaverine are plant natural products with clinically significant roles. THP is a precursor in the production of the drugs atracurium and cisatracurium, and papaverine is used as an antispasmodic during vascular surgery. In recent years, metabolic engineering advances have enabled the production of natural products through heterologous expression of pathway enzymes in yeast. Heterologous biosynthesis of THP and papaverine could play a role in ensuring a stable supply of these clinically significant products. Biosynthesis of THP and papaverine has not been achieved to date, in part because multiple pathway enzymes have not been elucidated. Here, we describe the development of an engineered yeast strain for de novo biosynthesis of THP. The production of THP is achieved through heterologous expression of two enzyme variants with activity on nonnative substrates. Through protein engineering, we developed a variant of N-methylcoclaurine hydroxylase with activity on coclaurine, enabling de novo norreticuline biosynthesis. Similarly, we developed a variant of scoulerine 9-O-methyltransferase capable of O-methylating 1-benzylisoquinoline alkaloids at the 3' position, enabling de novo THP biosynthesis. Flux through the heterologous pathway was improved by knocking out yeast multidrug resistance transporters and optimization of media conditions. Overall, strain engineering increased the concentration of biosynthesized THP 600-fold to 121 µg/L. Finally, we demonstrate a strategy for papaverine semisynthesis using hydrogen peroxide as an oxidizing agent. Through optimizing pH, temperature, reaction time, and oxidizing agent concentration, we demonstrated the ability to produce semisynthesized papaverine through oxidation of biosynthesized THP.


Assuntos
Produtos Biológicos , Papaverina , Engenharia de Proteínas , Saccharomyces cerevisiae , Produtos Biológicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Peróxido de Hidrogênio/química , Oxidantes/química , Papaverina/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 50(14): 8023-8040, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822874

RESUMO

Amino acid substitutions in the exonuclease domain of DNA polymerase ϵ (Polϵ) cause ultramutated tumors. Studies in model organisms suggested pathogenic mechanisms distinct from a simple loss of exonuclease. These mechanisms remain unclear for most recurrent Polϵ mutations. Particularly, the highly prevalent V411L variant remained a long-standing puzzle with no detectable mutator effect in yeast despite the unequivocal association with ultramutation in cancers. Using purified four-subunit yeast Polϵ, we assessed the consequences of substitutions mimicking human V411L, S459F, F367S, L424V and D275V. While the effects on exonuclease activity vary widely, all common cancer-associated variants have increased DNA polymerase activity. Notably, the analog of Polϵ-V411L is among the strongest polymerases, and structural analysis suggests defective polymerase-to-exonuclease site switching. We further show that the V411L analog produces a robust mutator phenotype in strains that lack mismatch repair, indicating a high rate of replication errors. Lastly, unlike wild-type and exonuclease-dead Polϵ, hyperactive variants efficiently synthesize DNA at low dNTP concentrations. We propose that this characteristic could promote cancer cell survival and preferential participation of mutator polymerases in replication during metabolic stress. Our results support the notion that polymerase fitness, rather than low fidelity alone, is an important determinant of variant pathogenicity.


Assuntos
DNA Polimerase II , Neoplasias , Nucleotídeos , Proteínas de Saccharomyces cerevisiae , DNA Polimerase II/metabolismo , Replicação do DNA/genética , Exonucleases/genética , Humanos , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Nucleotídeos/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Cell Biol ; 221(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587358

RESUMO

The guided entry of tail-anchored proteins (GET) pathway targets C-terminally anchored transmembrane proteins and protects cells from lipotoxicity. Here, we reveal perturbed ergosterol production in ∆get3 cells and demonstrate the sensitivity of GET pathway mutants to the sterol synthesis inhibiting drug terbinafine. Our data uncover a key enzyme of sterol synthesis, the hairpin membrane protein squalene monooxygenase (Erg1), as a non-canonical GET pathway client, thus rationalizing the lipotoxicity phenotypes of GET pathway mutants. Get3 recognizes the hairpin targeting element of Erg1 via its classical client-binding pocket. Intriguingly, we find that the GET pathway is especially important for the acute upregulation of Erg1 induced by low sterol conditions. We further identify several other proteins anchored to the endoplasmic reticulum (ER) membrane exclusively via a hairpin as putative clients of the GET pathway. Our findings emphasize the necessity of dedicated targeting pathways for high-efficiency targeting of particular clients during dynamic cellular adaptation and highlight hairpin proteins as a potential novel class of GET clients.


Assuntos
Adenosina Trifosfatases , Fatores de Troca do Nucleotídeo Guanina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Esqualeno Mono-Oxigenase , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Esteróis/metabolismo
14.
Mol Cell ; 82(11): 2006-2020.e8, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353987

RESUMO

CK1s are acidophilic serine/threonine kinases with multiple critical cellular functions; their misregulation contributes to cancer, neurodegenerative diseases, and sleep phase disorders. Here, we describe an evolutionarily conserved mechanism of CK1 activity: autophosphorylation of a threonine (T220 in human CK1δ) located at the N terminus of helix αG, proximal to the substrate binding cleft. Crystal structures and molecular dynamics simulations uncovered inherent plasticity in αG that increased upon T220 autophosphorylation. The phosphorylation-induced structural changes significantly altered the conformation of the substrate binding cleft, affecting substrate specificity. In T220 phosphorylated yeast and human CK1s, activity toward many substrates was decreased, but we also identified a high-affinity substrate that was phosphorylated more rapidly, and quantitative phosphoproteomics revealed that disrupting T220 autophosphorylation rewired CK1 signaling in Schizosaccharomyces pombe. T220 is present exclusively in the CK1 family, thus its autophosphorylation may have evolved as a unique regulatory mechanism for this important family.


Assuntos
Proteínas Serina-Treonina Quinases , Caseína Quinase Idelta , Humanos , Fosforilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais , Especificidade por Substrato , Treonina
15.
J Mol Biol ; 434(7): 167478, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123996

RESUMO

Despite decades of research and the availability of the full genomic sequence of the baker's yeast Saccharomyces cerevisiae, still a large fraction of its genome is not functionally annotated. This hinders our ability to fully understand cellular activity and suggests that many additional processes await discovery. The recent years have shown an explosion of high-quality genomic and structural data from multiple organisms, ranging from bacteria to mammals. New computational methods now allow us to integrate these data and extract meaningful insights into the functional identity of uncharacterized proteins in yeast. Here, we created a database of sensitive sequence similarity predictions for all yeast proteins. We use this information to identify candidate enzymes for known biochemical reactions whose enzymes are unidentified, and show how this provides a powerful basis for experimental validation. Using one pathway as a test case we pair a new function for the previously uncharacterized enzyme Yhr202w, as an extra-cellular AMP hydrolase in the NAD degradation pathway. Yhr202w, which we now term Smn1 for Scavenger MonoNucleotidase 1, is a highly conserved protein that is similar to the human protein E5NT/CD73, which is associated with multiple cancers. Hence, our new methodology provides a paradigm, that can be adopted to other organisms, for uncovering new enzymatic functions of uncharacterized proteins.


Assuntos
Monofosfato de Adenosina , Nucleotidases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Monofosfato de Adenosina/química , Nucleotidases/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Análise de Sequência de Proteína/métodos
16.
J Biol Chem ; 298(2): 101570, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35026224

RESUMO

In mitochondria, cysteine desulfurase (Nfs1) plays a central role in the biosynthesis of iron-sulfur (FeS) clusters, cofactors critical for activity of many cellular proteins. Nfs1 functions both as a sulfur donor for cluster assembly and as a binding platform for other proteins functioning in the process. These include not only the dedicated scaffold protein (Isu1) on which FeS clusters are synthesized but also accessory FeS cluster biogenesis proteins frataxin (Yfh1) and ferredoxin (Yah1). Yfh1 has been shown to activate cysteine desulfurase enzymatic activity, whereas Yah1 supplies electrons for the persulfide reduction. While Yfh1 interaction with Nfs1 is well understood, the Yah1-Nfs1 interaction is not. Here, based on the results of biochemical experiments involving purified WT and variant proteins, we report that in Saccharomyces cerevisiae, Yah1 and Yfh1 share an evolutionary conserved interaction site on Nfs1. Consistent with this notion, Yah1 and Yfh1 can each displace the other from Nfs1 but are inefficient competitors when a variant with an altered interaction site is used. Thus, the binding mode of Yah1 and Yfh1 interacting with Nfs1 in mitochondria of S. cerevisiae resembles the mutually exclusive binding of ferredoxin and frataxin with cysteine desulfurase reported for the bacterial FeS cluster assembly system. Our findings are consistent with the generally accepted scenario that the mitochondrial FeS cluster assembly system was inherited from bacterial ancestors of mitochondria.


Assuntos
Ferredoxinas , Proteínas Ferro-Enxofre , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Sulfurtransferases , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfurtransferases/metabolismo , Frataxina
17.
J Med Chem ; 65(3): 2471-2496, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35077178

RESUMO

Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Geranil-Geranildifosfato Geranil-Geraniltransferase/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Pirimidinas/uso terapêutico , Tiofenos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Células da Medula Óssea/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Feminino , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Ratos , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo , Tiofenos/toxicidade
18.
Nat Commun ; 13(1): 95, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013177

RESUMO

Non-heme iron and α-ketoglutarate-dependent (Fe/αKG) oxygenases catalyze various oxidative biotransformations. Due to their catalytic flexibility and high efficiency, Fe/αKG oxygenases have attracted keen attention for their application as biocatalysts. Here, we report the biochemical and structural characterizations of the unusually promiscuous and catalytically versatile Fe/αKG oxygenase SptF, involved in the biosynthesis of fungal meroterpenoid emervaridones. The in vitro analysis revealed that SptF catalyzes several continuous oxidation reactions, including hydroxylation, desaturation, epoxidation, and skeletal rearrangement. SptF exhibits extremely broad substrate specificity toward various meroterpenoids, and efficiently produced unique cyclopropane-ring-fused 5/3/5/5/6/6 and 5/3/6/6/6 scaffolds from terretonins. Moreover, SptF also hydroxylates steroids, including androsterone, testosterone, and progesterone, with different regiospecificities. Crystallographic and structure-based mutagenesis studies of SptF revealed the molecular basis of the enzyme reactions, and suggested that the malleability of the loop region contributes to the remarkable substrate promiscuity. SptF exhibits great potential as a promising biocatalyst for oxidation reactions.


Assuntos
Proteínas Fúngicas/química , Ferro/química , Ácidos Cetoglutáricos/química , Oxirredutases N-Desmetilantes/química , Terpenos/química , Androsterona/química , Androsterona/metabolismo , Sítios de Ligação , Biocatálise , Cátions Bivalentes , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Hidroxilação , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Modelos Moleculares , Mutação , Oxirredução , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Progesterona/química , Progesterona/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Terpenos/classificação , Terpenos/metabolismo , Testosterona/química , Testosterona/metabolismo
19.
J Mol Biol ; 434(5): 167437, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990655

RESUMO

Genomic stability is compromised by DNA damage that obstructs replication. Rad5 plays a prominent role in DNA damage bypass processes that evolved to ensure the continuation of stalled replication. Like its human orthologs, the HLTF and SHPRH tumor suppressors, yeast Rad5 has a RING domain that supports ubiquitin ligase activity promoting PCNA polyubiquitylation and a helicase domain that in the case of HLTF and Rad5 was shown to exhibit an ATPase-linked replication fork reversal activity. The RING domain is embedded in the helicase domain, confusing their separate investigation and the understanding of the exact role of Rad5 in DNA damage bypass. Particularly, it is still debated whether the helicase domain plays a catalytic or a non-enzymatic role during error-free damage bypass and whether it facilitates a function separately from the RING domain. In this study, through in vivo and in vitro characterization of domain-specific mutants, we delineate the contributions of the two domains to Rad5 function. Yeast genetic experiments and whole-genome sequencing complemented with biochemical assays demonstrate that the ubiquitin ligase and the ATPase-linked activities of Rad5 exhibit independent catalytic activities in facilitating separate pathways during error-free lesion bypass. Our results also provide important insights into the mutagenic role of Rad5 and indicate its tripartite contribution to DNA damage tolerance.


Assuntos
Dano ao DNA , DNA Helicases , Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Catálise , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Humanos , Domínios Proteicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
J Biomol Struct Dyn ; 40(2): 635-647, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876544

RESUMO

Both ATP and inorganic polyphosphates (PolyP) appeared to be involved in the yeast energy homeostasis, in which plasma membrane PMA1 H+-АТРase plays one of the key roles. During biogenesis and functioning, the enzyme undergoes structural and regulatory phosphorylation. Aim of the work was to elucidate interconnection between functioning of the yeast PMA1 H+-АТРase carrying point substitutions that affected the enzyme structure-function relationship and its ability to be phosphorylated and PolyP metabolism. Effect of such replacements of phosphorylable and non-phosphorylable residues in three topologically and functionally different domains of the enzyme - membrane, extracytosolic, and C-terminal - on the metabolism of polyphosphates and distribution between short-, mid-, and long-chained PolyP fractions (PolyP1-PolyP4-5) has been studied. АТРase activity of membrane and most extracytosolic strains was noticeably lower comparing to the wild type. Of these mutants, three substitutions (L801A, E803A, E847A) have not caused significant changes in PolyP content regardless up to twofold drop of the ATPase activity; F796A with four-fold decreased activity has led to noticeable increase of mid-chained PolyP fractions. The most pronounced effect of PolyP redistribution was caused either by removal of potential (S846A, T850A, D851A) or established (S911A) phosphosites in the PMA1 ATPase or by altering type of the established phosphosite (S911D, T912D). Patterns of PolyP fractions for these two groups have significantly differed from each other, occurring in opposite directions for mutants with removed and changed phosphosite. Changing residue of phosphosite without altering its type (T850S) has not led to significant changes in PolyP content.Communicated by Ramaswamy H. Sarma.


Assuntos
ATPases Translocadoras de Prótons , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Mutação Puntual , Polifosfatos/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA